

September 25, 2013

Seminar on Humanitarian Logistics

Tokyo University of Marine Science and Technology

An Agent-based Model for Resource Allocation During Relief Distribution

Rubel Das* Shinya Hanaoka

Dept. of International Development Engineering Tokyo Institute of Technology

OUTLINE

1. Background:

Disaster and logistics Importance of resource allocation Objectives

2. Model description

Applicability Ontology of humanitarian logistics Agents relationship Simulation flow

3. Analysis

Data Software Results

4. Conclusions

DISASTER PATTERN

Definition of Disaster

>10 or more people killed
>100 or more people affected
>Declaration of state of emergency
>Call for international assistance

Number and impact increase **five times** in next 50 years.

Source: EM-DAT database (<u>http://www.emdat.be/</u>) 3 / 38

HUMANITARIAN LOGISTICS (HL)

After Earthquake

HL is the process of <u>planning</u>, <u>managing</u>, <u>and controlling</u> the <u>efficient</u> flows of relief, information and service from the points of origin to point of destination to meet the urgent needs of the victims under emergency situation.

DIFFERENCES

Business logistics

Humanitarian logistics

IMPORTANCE OF HL

ACTIVITIES IN HL

IMPORTANCE OF RESOURCE ALLOCATION

Why Resource Allocation?

- 1. Large relief demand
- 2. Shortage of relief supply
- **3. Different degree of relief urgency in different zones**

Results due to Poor Resource Allocation

- 1. Social **dissatisfaction** (Haiti victims fight due to relief, 2010)
- 2. Conflict between authorities (Pakistan govt. and UN conflict, 2010)

OBJECTIVES

- 1. To introduce an <u>agent-based model</u> for allocating fleet in the network of humanitarian logistics.
- 2. To analyze the effect of the number of fleet in relief distribution.

OUTLINE

1. Background:

Disaster and logistics Importance of resource allocation Objectives

2. Model description

Applicability Ontology of humanitarian logistics Agents relationship Simulation flow

3. Analysis

Data Software Results

4. Conclusions

INTRODUCTION OF AGENT-BASED MODEL

□ An agent-based model (ABM) consists of

- a set of agents
- a set of agents relationship
- a framework for simulating agent behaviors and interactions

MODELS COMPARISON

Criteria	Agent-based model	Operational research model
Flexibility	Each agent can be modeled with different properties (for example size, capacity).	Difficult to provide properties to each agent.
Information sharing	Information sharing is easy to model.	Difficult to share information to particular agent.
Size (variables, constraint)	Large size problem can be handled by modularity (sub-problem).	Size is constraint, though heuristics method can be applied.

MODELS COMPARISON

Criteria	Agent-based model	Operational research model
Time scale	if system is highly dynamic, ABM is more applicable.	Require long time to responds to changed environment.
Output	Agent does not have global view, however ABM can produce competitive result.	Can produce global solution.

ONTOLOGY OF HL AOA

Donor Objective: Max. social esteem Activity: Donation

Legend

Information flow Acknowled gement
Goods flow Fiscal – flow

AGENTS' RELATIONSHIP

Agents	Objectives			
Aid organization (AOA)	to reach more victims			
Carrier (CAA)	to reduce logistics cost			
Demand (DA)	to get more relief			
Society (SA)	max relief efficiency			
Coordinator(COA)	Serve severe victims first			
coordination				
via contract CAA <	AOA			
	COA			
DA	DA DA			
	SA 15/38			

STAGES AND ACTION LINKS (1)

Challenge in Last Mile Distribution (LMD)

- Network disruption
- Information complexity
- Demand management

Next slide>>>

Simulation flow

STAGES AND ACTION LINKS (2)

Last mile logistics (LMD) system

Simulation flow

SIMULATION FLOW(1)

Simulation flow

SIMULATION FLOW(2)

PHASE 2

<u>Step 2.1. Logistics cost:</u> = f(distance, time)

<u>Step 2.2. Relief demand:</u> Time dependent • food

Step 2.3. Satisfaction rate:
$$S_i = \frac{Delivered \ relief}{Required \ relief}$$

Step 2.4: URGENCY MATRIX

TOPSIS = Technique for Order of Preference by Similarity to Ideal Solution

• Ranking of Demand agents (DA)

<u>Criteria:</u>

- 1) time varying demand for product1.
- 2) the population density associate with a given affected area.
- 3) the ratio of frail population, e.g. children and older.
- 4) the time difference of last delivery
- 5) the restoration progress. This value lies within 1 to 10.

Step 2.4: URGENCY MATRIX

 d_i^+ = distance from <u>positive</u> ideal solution d_i^- = distance from <u>negative</u> ideal solution

PHASE 4: DEPRIVATION COST AND SOCIAL BENEFIT

<u>Deprivation</u> <u>cost</u> $f_i(\Delta t) = \mu_i D_i(t) e^{\gamma + \beta \Delta t}$

(modified from Holguin-Veras et al, 2010)

Interpretation

1.Deprivation cost (Shortage cost) due to relief "shortage" increase **exponentially with time.**

2. The urgency index (μ) create differences of deprivation cost among demand points.

PHASE 4: DEPRIVATION COST AND SOCIAL BENEFIT

 $acknowledgement = \frac{social_benefit}{cost}$

Interpretation

- Social benefit is not easy to compute. We have used proxy for it.
- Aid organization's effort is not evaluated properly in the real world.

OUTLINE

1. Background:

Disaster and logistics Importance of resource allocation Objectives

2. Model description

Applicability Ontology of humanitarian logistics Agents relationship Simulation flow

3. Analysis

Data Software Results

4. Conclusions

Features in five cities of three prefectures

DATA		Vervaeck et al., 2			k et al., 2011
Prefecture	Demand agent (city)	Victims	% Fatalities	% Frail People	Density (#/km²)
Fukushima (hub1)	<u>A1 : Iwaki</u>	<u>341,983</u>	<u>0.10</u>	<u>0.065</u>	<u>270</u>
	A2 : Namie-machi	18,866	0.97	0.065	99
	A3 : Minamisoma	69,171	1.00	0.065	170
	A4 : Soma	37,843	1.21	0.066	190
	A5 : Shinchi-machi	7,141	1.58	0.066	191
	A6 : Natori	69,311	1.47	0.060	727
Miyogi	A7 : Higashimatsushima	35,522	3.32	0.060	420
Miyagi (hub 2)	A8 : Ishinomaki	160,835	3.65	0.060	295
	A9 : Minami-sanriku	16,294	2.30	0.060	120
	A10 : Kesennuma	63,841	7.40	0.060	220
lwate (hub3)	A11 : Rikuzentakata	21,262	10.03	0.067	100
	A12 : Kamaichi	41,360	3.03	0.067	93
	A13 : Otsuchi	13,811	11.63	0.067	83
	A14 : Yamada-machi	16,959	4.98	0.067	77
	A15 :Miyako	57,406	1.34	0.067	46

DATA

Summary o			
Parameter	Value		
Vehicle capacity	1600 unit		
planning periods	2 days		
working hours	10 hours		
fleet operation cost	0.79 \$ / km	-> USA s	standard
penalty cost	γ = 1.63	-> fixed	cost for delay
	β= 0.00002	-> cost f	or per hour delay

Software

High

power

Modeling

_0√

SOFTWARE COMPARISON

- 1. Pythagoras
- 2. MANA
- 3. SWARM
- 4. MATLAB
- 5. ANYLOGIC
- Objected oriented
 Language (Java, C++) [27]
- NetLogo [13] StarLogo [3]

[*Number of journals of using ABM]

Participatory simulation

Easy

Ease of Model development

Hard 28 / 38

Software

SIMULATOR

➤NetLogo (version 5.0.3)

>Open source. link:http://ccl.northwestern.edu/netlogo/

>>NetLogo web<<

>>Interface of NetLogo<<

29 / 38

Results

RESULTS OF TOPSIS

Relief urgency index (µ) for demand points at Day 0

TWO DISTRIBUTION STRATEGY

Method 1: Enumeration approach

1. Minimization of $\min \sum_{r} \sum_{k} c_{rk} y_{rkt} ==$ Transportation cost

2. Relief urgency not included

Method 2 : Decomposition approach {decompose the problem in smaller problem}

1. minimization of

$$\min Z = \sum_{i} w_1(1-s_i) f(1-\mu_i) + w_2 \sum_{i} c_{rk} y_{rkt} \quad \forall i \in DA$$

==Suffering cost + Transportation cost

2. Relief urgency included

Results

FLEET ALLOCATION

Fleet allocation for various hubs to minimize the deprivation cost

Total fleet	Allo	Allocation of fleet		Avg. deprivation cost (\$)	
number	Hub 1	Hub 2	Hub 3	Enumeration approach	Decomposition approach
9	3	4	2	5127.73	36.37
	2	5	2	5127.73	72.74
12	3	5	4	4766.33	24.22
	3	4	5	4766.33	25.36
15	4	7	4	3694.11	15.58
	5	6	4	3694.11	26.95
	****	* * *	***	*	*** <u>32 / 38</u> **

Results

DECOMPOSITION APPROACH (Method 2)

>> Change of transportation cost and shortage <<

Transport cost day 2 > Transport cost day1

Deprivation (shortage) cost decreases with increases of total fleet

ACKNOWLEDGEMENT

dc= Deprivation cost TC= Transport cost

CONCLUSIONS

- \succ We graphed the ontology of humanitarian logistics.
 - Although agents have overall goal of helping victims, they have also own targets.
- The ranking of demand points are made. This ranking is valuable for deciding next delivery point and time.
- Trade-off between transport cost and deprivation cost.
 - Transport cost increases to gain more social satisfaction.
 - Deprivation (shortage) cost decreases with increase of resources.
- Proxy of performance of aid-organizations is evaluated by acknowledgement value.

> The 'acknowledgement' can be a measure for resource planning.

Submit: An agent-based model for resource allocation during relief distribution (Under review at Journal of Humanitarian Logistics and Supply Chain Management)

Thank you for your kind attention

Contact: <u>hanaoka@ide.titech.ac.jp</u> <u>rubeldas@tp.ide.titech.ac.jp</u>

appendix: <u>TOPSIS</u>

1. Normalize
$$p_{ij} = \frac{P'_{ij}}{\sum\limits_{i=1}^{n} P'_{ij}}, i = 1, ..., n \longrightarrow assessment \\ matrix P = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1m} \\ P_{21} & P_{22} & \cdots & P_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ P_{11} & P_{12} & \cdots & \vdots & \vdots \\ P_{11} & P_{12} & \cdots & \vdots & \vdots \\ p_{11} & P_{12} & \cdots & \vdots & \vdots \\ p_{11} & P_{12} & \cdots & \vdots & \vdots \\ p_{11} & P_{12} & \cdots & \vdots & \vdots \\ p_{11} & P_{12} & \cdots & p_{1m} \end{bmatrix}$$

2. The $e_j = -k\sum_{i=1}^{n} p_{ij} \ln p_{ij}$ Where, $k = \frac{1}{\ln n}$
3. Degree of $d_j = 1 - e_j$
4. Weight of each $w_j = \frac{d_j}{\sum\limits_{j=1}^{m} d_j}$
5a. Positive ideal solution $A^+ = \left(\max_i (p_{i1}), \max_i (p_{i2}), \dots, \max_i (p_{im}), \right) = p_1^+, p_2^+, \dots, p_m^+$
5b. Negative ideal solution $A^- = \left(\min_i (p_{i1}), \min_i (p_{i2}), \dots, \min_i (p_{im}), \right) = p_1^-, p_2^-, \dots, p_m^-$
6. Weighted Euclidean $d_i^- = \sqrt{\sum_{j=1}^{m} w_j (p_{ij} - p_j^-)^2}$ $d_i^+ = \sqrt{\sum_{j=1}^{m} w_j (p_j^+ - p_{ij})^2}$
7. Relief urgency $\mu_i = \frac{d_i^-}{d_i^+ + d_i^-}$ $37/38$